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Abstract

Metformin is an anti-diabetic drug with anorexigenic
properties. The precise cellular mechanisms of its action
are not entirely understood. Adipose tissue has recently
been recognized as an important endocrine organ that is
pivotal for the regulation of insulin resistance and energy
homeostasis. Due to its thermogenic capacity brown
adipose tissue contributes to the regulation of energy
metabolism and is an attractive target tissue for pharma-
cological approaches to treating insulin resistance and
obesity. Leptin is the prototypic adipocyte-derived hor-
mone inducing a negative energy balance. We investi-
gated effects of metformin on adipocyte metabolism,
signalling, and leptin secretion in a brown adipocyte
model. Metformin acutely stimulated p44/p42 mitogen-
activated protein (MAP) kinase in a dose- (3-2-fold at
1 mmol/l, P<0-05) as well as time-dependent (3-8-fold at
5 min, P<0-05) manner. This stimulation was highly
selective since phosphorylation of intermediates in the
stress kinase, janus kinase (JAK)-signal transducer and

activator of transcription (STAT), and phosphatidylinositol
(PI) 3-kinase signalling pathways such as p38 MAP kinase,
STAT3, and Akt was unaltered. Furthermore, chronic
metformin treatment for 12 days dose-dependently inhibi-
ted leptin secretion by 35% and 75% at 500 pmol/l and
1 mmol/l metformin respectively (P<0-01). This reduc-
tion was not caused by alterations in adipocyte differen-
tiation. Moreover, the impairment in leptin secretion by
metformin was reversible within 48 h after removal of the
drug. Pharmacological inhibition of p44/p42 MAP kinase
prevented the metformin-induced negative effect on
leptin secretion. Taken together, our data demonstrate
direct acute effects of metformin on adipocyte signalling
and endocrine function with robust inhibition of leptin
secretion. They suggest a selective molecular mechanism
that may contribute to the anorexigenic effect of this
antidiabetic compound.

Journal of Endocrinology (2004) 183, 299-307

Introduction

Metformin is a widely used anti-diabetic agent for the
treatment of type 2 diabetes. It enhances insulin sensitiv-
ity. Furthermore, this compound displays the unique
characteristic of promoting weight loss and reducing
appetite (Bailey & Turner 1996, Matthaei et al. 2000,
Kirpichnikov ef al. 2002). Although used as a drug since
the late 1950s, the mechanisms of action by which
metformin lowers glucose and lipid levels remain unclear.

Potential direct effects of metformin on signalling path-
ways are poorly understood. In muscle, insulin receptor
tyrosine kinase activity (Stith ef al. 1996, 1998) and recruit-
ment of glucose transporter (GLUT) 4 to the plasma mem-
brane (Sarabia ef al. 1992, Rouru et al. 1995) have been
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shown to be increased by chronic metformin treatment.
In hepatocytes metformin inhibits gluconeogenesis and
glycogenolysis probably due to a number of mechanisms
such as diminished lactate uptake (Radziuk ef al. 1997),
reduction in pyruvate carboxylase—phosphoenolpyruvate
carboxykinase activity (Large & Beylot 1999), antagonism
to glucagon (Dominguez et al. 1996), enhancement of
insulin action (Wiernsperger & Bailey 1999), and de-
creased concentrations of adenosine triphosphate (Argaud
et al. 1993). In this context, modulation of cellular respir-
ation via unidentified cell-signalling pathways appears to
play a role (Dominguez ef al. 1996, Yki-Jarvinen et al.
1999, Kirpichnikov et al. 2002). Activation of 5'-AMP-
activated protein kinase (AMPK) has been implicated in
metformin action in hepatocytes (Zhou et al. 2001).
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Figure 1 Metformin acutely activates p44/p42 MAP kinase. Fully differentiated brown adipocytes
were stimulated with metformin for the times (1-40 min) (A) and at the concentrations (B)
indicated. (A) Cell lysates and immunoblots using phospho-specific antibodies were prepared as
described in Materials and Methods. (B) Bar graph analyses with sem. of > 6 independent
experiments and representative immunoblots are shown. * Denotes statistically significant
(P<0-05) differences comparing non-treated (Basal) to metformin-treated cells.
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By contrast to liver and muscle, relatively little is known
about direct metformin actions in adipocytes. In rat
adipose tissue glucose uptake has been found to be
enhanced (Matthaei ef al. 1991, 1993) whereas in human
adipocytes no change has been described by metformin
treatment (Pedersen ef al. 1989, Ciaraldi er al. 2002).
Recently, there has been a growing appreciation of
adipose tissue as an endocrine organ that is pivotal for the
systemic regulation of insulin action and energy homeo-
stasis (Rajala & Scherer 2003). Direct interactions of
metformin with adipocyte signalling and endocrine func-
tion may thus be instrumental for this compound’s effects.
Clinical studies with metformin have constantly shown
either a decrease in body weight (DeFronzo ef al. 1991,
DeFronzo & Goodman 1995) or at least a significantly
smaller increase in body weight compared with other
forms of treatment (Yki-Jarvinen ef al. 1999). The
adipocyte-derived hormone, leptin, is an essential player in
regulating energy homeostasis (Friedman & Halaas 1998,
Spiegelman & Flier 2001, Friedman 2002). Brown adipose
tissue importantly contributes to the modulation of energy
homeostasis in rodents (Lowell & Flier 1997, Lowell &
Bachman 2003), has been implicated in human obesity
(Fumeron et al. 1996, Oberkofler et al. 1997, Fogelholm
et al. 1998, Valve et al. 1998), and is an attractive target
tissue for pharmacotherapeutic approaches to obesity
(Danforth & Himms-Hagen 1997, Lowell & Flier 1997,
Bray & Greenway 1999, Tiraby et al. 2003, Klaus 2004).
Recent studies suggest the existence of a basal brown
adipose phenotype that may be important for the main-
tenance of normal insulin sensitivity and energy homeo-
stasis (Yang ef al. 2003). Moreover, transdifferentiation of
white to brown adipocytes has been demonstrated and
may offer interesting new therapeutic perspectives for
treating insulin resistance and energy balance disorders
(Tiraby & Langin 2003, Tiraby et al. 2003). We have
previously demonstrated robust leptin secretion in brown
adipocytes (Klein ef al. 2002, Kraus ef al. 2002). Investi-
gation of direct metformin interaction with adipose tissue
may identify molecular targets and provide insights into
mechanisms of insulin resistance and energy homeostasis
regulation.

Here, we studied direct metformin effects on adipocyte
signalling, differentiation, and leptin secretion (Klein et al.
2002, Kraus et al. 2002). We demonstrate a selective
activation of p44/p42 mitogen-activated protein (MAP)
kinase by metformin and a differentiation-independent,
robust reduction in leptin secretion that is prevented by
pharmacological inhibition of p44/p42 MAP kinase.

Materials and Methods

Materials

Antibodies against the following molecules were employed
for immunoblotting: signal transducer and activator of
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Figure 2 Metformin does not stimulate p38 MAP kinase, Akt or
STAT3 phosphorylation. Adipocytes were stimulated with
metformin (1 mM) for the indicated times (30 s and 1, 2, 5 and
10 min). Cell lysates and immunoblots using phospho-specific
antibodies were prepared as described in Materials and Methods.
Representative blots of phospho-p38 MAP kinase (upper panel),
phospho-Akt (middle panel), and phospho-STAT3 (lower panel) of
> 5 independent experiments are shown.

transcription (STAT) 3 (phospho-Tyr705), p44/p42 MAP
kinase (phospo-Thr202/Tyr204), Akt (phospho-Ser473)
(Cell Signaling Technology, Inc., Beverly, MA, USA),
CCAAT enhancer binding protein (C/EBP) a, peroxi-
some proliferator-activated receptor (PPAR) 7y (Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA), uncou-
pling protein (UCP)-1 (Alpha Diagnostic International,
San Antonio, TX, USA). The pharmacological MAP
kinase inhibitor, PD98059, was purchased from Cell
Signaling Technology, Inc. Unless stated otherwise, all
other chemicals were purchased from Sigma-Aldrich Co.
(St Louis, MO, USA).

Cell culture

SV40T-immortalized brown adipocytes from the FVB
strain of mice — generated as described elsewhere (Klein
et al. 1999) — were used for all experiments. Preadipocytes
were seeded on tissue culture plates (Sarstedt, Niimbrecht,
Germany) and grown to confluence in culture medium
with Dulbecco’s modified Eagle’s medium (Life Tech-
nologies, Paisley, Strathclyde, UK), supplemented with
20% fetal bovine serum, 4-5 g/l glucose, 20 nM insulin,
1 nM tritodothyronine (‘differentiation medium’), and
penicillin/streptomycin. Adipocyte differentiation was
induced by complementing the medium further with
250 uM indomethacin, 500 uM isobutylmethylxanthine
and 2 pg/ml dexamethasone for 24 h when confluence
was reached. After this induction period, cells were
changed back to differentiation medium. Cell culture was
continued for 5 more days before cells were starved for
24 h with serum-free medium prior to carrying out the
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Figure 3 Chronic metformin treatment dose-dependently inhibits
leptin secretion. Cells were chronically exposed to the indicated
concentrations of metformin over the entire differentiation course.
Medium was collected every 24 h. Secretion of leptin was
analysed in the culture medium using a mouse leptin RIA. A line
graph with sem. of >3 independent experiments is shown
comparing untreated cells (Con, @) with 500 uM (¢) and T mM
(M) metformin treatment. ** Denotes high statistical significance
(P<0-01).

immunoblotting experiments. For leptin secretion experi-
ments, cell culture was continued for up to 9 days after
induction of differentiation.

Determination of leptin secretion

Cells were chronically treated with or without metformin
and medium was collected every 24 h from day 4 to day
12 of the differentiation course. Treatment with the
pharmacological MAP kinase inhibitor, PD98059, was
begun 30 min prior to adding metformin. The amount of
leptin released into the medium was determined using a
mouse leptin RIA (Linco Research, Inc., St Louis, MO,
USA).

Oil Red O staining

Tissue culture plates were washed twice with PBS and
fixed with 10% formalin for at least 1 h at room tempera-
ture. Cells were then stained for 1 h at room temperature
with a filtered Oil Red O solution (0-5g Oil Red O
in 100 ml isopropyl alcohol). The staining solution was
washed off the cells with distilled water twice.

Western blotting

SV40T-immortalized mouse brown adipocytes were used
between passages 10 and 25. For p44/p42 MAP kinase,
Akt, p38 MAP kinase, and STAT3 analysis fully differen-
tiated cells were starved for 24 h in serum-free medium
prior to carrying out the experiments. Following treatment
with metformin as indicated, proteins were isolated
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using whole cell lysis buffer containing 2 mM vanadate,
10 pg/ml aprotinin, 10 pg/ml leupeptin, and 2 mM
PMSEF. Protein content of lysates was determined by the
Bradford method using the dye from Bio-Rad (Hercules,
CA, USA). Lysates were submitted to SDS-PAGE and
transferred to nitrocellulose membranes (Schleicher and
Schuell Inc., Keane, NH, USA). Membranes were
blocked with rinsing buffer (10 mM Tris, 150 mM NaCl,
0-05% Tween, pH 7:2) containing 3% bovine serum
albumin (‘blocking solution’) overnight. Membranes were
then incubated in blocking solution for 1-2 h with the
antibodies indicated. Protein bands were visualized
using the chemiluminescence kit from Roche Molecular
Biochemicals (Mannheim, Germany) and enhanced
chemiluminescence films (Amersham Pharmacia Biotech,
Freiburg, Germany).

Statistical analysis

Data are presented as means £ s.EM. Sigma Plot software
(SPSS Science; Chicago, IL, USA) was employed for
statistical analysis of all data. Statistical significance was
determined using the unpaired Student’s f-test. P values
<0-05 are considered significant, <0-01 highly significant.

Results

Metformin acutely induces p44/p42 MAP kinase but not p38
MAP kinase, Akt and STAT3 phosphorylation

P44/42 MAP kinase is an important signalling intermedi-
ate of growth factor signalling pathways and a major
regulator of gene transcription. Treatment of fully differ-
entiated brown adipocytes with metformin resulted in a
time- and dose-dependent stimulation of p44/p42 MAP
kinase as assessed using phospho-specific antibodies (Fig.
1A and B). Metformin-induced activation was most
prominent after 5 min (Fig. 1A) with a maximal 3-5-fold
phosphorylation increase at a concentration of 1 mM (Fig.
1B). There was no change in protein amounts of MAP
kinase as assessed by immunoblots using p44/p42 MAP
kinase antibodies (data not shown). Furthermore, met-
formin treatment did not induce significant changes in
phosphorylation of p38 MAP kinase, Akt and STAT3 —
key signalling molecules of the stress kinase, phosphati-
dylinositol 3-kinase (PI 3-kinase), and janus kinase (JAK)/
STAT signalling pathways respectively (Fig. 2).

Metformin treatment inhibits leptin secretion in a
dose-dependent manner

When cells were chronically exposed to metformin, there
was a dose-dependent impairment in leptin secretion.
Non-treated control cells displayed a differentiation-
dependent increase in leptin secretion over two orders of
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Figure 4 The inhibitory effect of metformin on leptin secretion is not caused by
alterations in adipocyte differentiation. (A) Differentiation was assessed in cell lines either
non-treated (Con) or chronically exposed to metformin (Met, T mM) using the fat-specific
Oil Red O staining. (B) Using specific antibodies as applicable, protein expression of

the differentiation markers uncoupling protein-1 (UCP-1, upper panel), peroxisome
proliferator-activated receptor gamma (PPARy, middle panel) and CCAAT
enhancer-binding protein alpha (C/EBPa, lower panel) was analysed in immunoblots.
Representative blots and staining results of > 2 independent experiments are shown.

magnitude with the lowest detectable leptin levels at a
concentration of 0-2 pg/1 rising to the maximum detect-
able level of 20 pg/1 during a 12-day-differentiation course
(Fig. 3). Chronic metformin treatment dose-dependently
inhibited this increase in leptin secretion with a maximum
reduction of 35% and 75% at the end of the differentation
course at concentrations of 500 pM and 1 mM metformin
respectively. These changes were highly significant (Fig.
3). A significant inhibition of leptin secretion was also seen
at 100 uM metformin (data not shown). Furthermore,
metformin did not influence glucose utilization and lactate
production (data not shown).

The inhibitory effect of metformin on leptin secretion is not
caused by alterations in differentiation

To separate the impairment in leptin secretion from a
differentiation-dependent effect, we next investigated
adipocyte differentiation under chronic metformin treat-

Iwww.endocrinology-journa[s.org

ment. When differentiating adipocytes were stained with
the fat-specific Oil Red O at days 4, 7, 10 and 13 of the
differentiation course there was no difference between
metformin-treated and non-treated control cells (Fig. 4A).
Furthermore, protein expression of early and late adipocyte
differentiation markers such as C/EBPo, PPARY, and
UCP-1 did not differ between metformin-treated and
non-treated control cells throughout the differentiation
course (Fig. 4B).

Subacute metformin treatment induces a reversible impairment
in leptin secretion

To further define the kinetics of the inhibitory metformin
effect on leptin secretion, we pretreated adipocytes for
various periods of time with 1 mM metformin on day 8 of
the differentiation course, collected the medium every
24 h, and continued cell culture for two more days
without metformin exposure. Interestingly, metformin
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Figure 5 Subacute metformin treatment induces an impairment in
leptin secretion that can be prevented by inhibition of p44/p42
MAP kinase. On day 8 of the differentiation course cells were
either left untreated (Con) or treated with metformin (Met, T mM)
for 24 h. Medium was collected 24 h (A, left panel) or 72 h (A,
right panel) after removal of metformin. (B) The MAP kinase
inhibitor, PD98059 (PD, 50 uM), was added 1 h prior to
metformin treatment for 24 h, and the medium was analysed for
leptin concentrations 24 h later. A bar graph analysis with SEM.

of >5 independent experiments is shown. * Denotes statistical
significance (P<0-05).

treatment for 24 h resulted in a significant 30% reduction
of leptin secretion within the next 24 h (Fig. 5A, left
panel). This effect was completely reversible 72 h after
metformin removal from the medium (Fig. 5A, right
panel). Furthermore, there was a time-dependent trend
towards impaired leptin secretion after 8 and 16 h of
metformin treatment whereas shorter periods of time did
not show significant alterations in leptin secretion as
compared with control cells (data not shown).

Inhibition of p44/p42 MAP kinase prevents the inhibitory
metformin effect

The impairment of leptin secretion by subacute metformin
treatment in concert with the acute induction of p44/p42

Journal of Endocrinology (2004) 183, 299-307

MAP kinase phosphorylation suggested an involvement of
this signalling intermediate in the mediation of this effect.
Metformin treatment for 24 h again significantly dimin-
ished leptin secretion by 30% on the following day as
compared with non-treated control cells (Fig. 5B). How-
ever, when cells were pretreated with the p44/p2 MAP
kinase inhibitor, PD98059, exposure to metformin failed
to significantly inhibit leptin secretion (Fig. 5B). Treat-
ment with the pharmacological inhibitor alone did not
change basal leptin secretion (Fig. 5B).

Discussion

In this study, we show direct effects of the anorexigenic
anti-diabetic drug, metformin, on adipocyte signalling and
endocrine function with robust inhibition of leptin
secretion.

Metformin directly induced p44/p42 MAP kinase
activation. To our knowledge, this is the first report
demonstrating stimulation of this important growth factor
signalling intermediate by metformin. Apart from p44/
p42 MAP kinase, only AMPK and p38 MAP kinase have
been shown to be implicated in intracellular metformin
action so far. Zhou et al. (2001) and Hawley et al. (2002)
described activation of AMPK by chronic treatment with
metformin in rat hepatocytes and skeletal muscle. In
skeletal muscle, Kumar & Dey (2002) also found an
increase in p38 MAP kinase activity by metformin.
Interestingly, however, p38 stress kinase-, PI 3-kinase-,
and JAK/STAT-signalling pathways remained unaffected
by metformin treatment in our study using adipocytes.
These discrepancies may indicate tissue- and cell-specific
effects of metformin.

Of note, stimulation of p44/p42 MAP kinase occurred
acutely and was time- and dose-dependent. In concert
with the demonstrated selectivity of action, these findings
suggest a receptor-mediated signalling mechanism em-
ployed by metformin in adipocytes. However, no specific
receptor mediating the effects of metformin has been
identified so far. Rather, this lipophilic compound may
exert its effects by alterations of the cellular membrane
structure (Meuillet ef al. 1999).

Activation of p44/p42 MAP kinase plays an important
role in regulating gene expression, insulin signalling and —
specifically in brown adipocytes — thermogenesis (Porras
et al. 1998, Klein et al. 2000). Therefore, it appears
plausible to propose important functional consequences of
metformin-induced acute changes in p44/p42 MAP
kinase signalling in adipocytes. Indeed, we found that
metformin directly affected endocrine function and inhib-
ited leptin secretion. We used a previously well charac-
terised adipocyte model (Klein e al. 2002) that displays
strong leptin secretion (Kraus et al. 2002). A decrease
in leptin levels in metformin-treated individuals has
been found in several studies (Freemark & Bursey 2001,

[www.endocrinology-journals.org]
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Figure 6 Metformin directly modulates adipocyte signalling and endocrine function. Metformin activates
p44/p42 MAP kinase and impairs leptin secretion unless p44/p42 MAP kinase is inhibited. This effect is
reversible and is not caused by alterations in adipocyte differentiation. Furthermore, it is selective since
there is no activation of stress kinase, Pl 3-kinase, and JAK/STAT signalling pathways. Modulation of
endocrine adipocyte function by metformin may be important in the regulation of energy homeostasis.

Glueck et al. 2001, Fruehwald-Schultes et al. 2002);
however, in other studies, no effect on serum leptin was
found (Guler et al. 2000, Mannucci et al. 2001, Uehara
et al. 2001, Ciaraldi et al. 2002, Sivitz et al. 2003). Possible
explanations for these discrepancies may be the length of
treatment and the study population, with obese people
showing a decrease in leptin levels after long-term treat-
ment. A negative correlation of the length of metformin
therapy with circulating leptin levels in this setting could
possibly be accounted for by a direct subacute effect of this
anti-diabetic drug on adipose tissue as described in this
study.

In a previous study in rat white adipocytes, a negative
influence of chronic metformin exposure on leptin secre-
tion has also been reported (Mueller ef al. 2000). As we
show here, the direct metformin-induced impairment in
leptin secretion is independent of changes in adipocyte
morphology and differentiation. Furthermore, it is already
evident after 24 h of treatment, and it is reversible. As was
the case with activation of p44/p42 MAP kinase, these
observations point towards a selective signalling mechan-
ism mediating these effects. In favour of this assumption,
we found that inhibition of p44/p42 MAP kinase signal-

Iwww.endocrinology-journals.org

ling prevented the metformin-induced reduction in leptin
secretion, thus suggesting an involvement of this important
growth factor signalling intermediate in the modulation of
endocrine adipocyte function.

In summary, our data show a direct selective interac-
tion of metformin with adipocyte p44/p42 MAP kinase
signalling and leptin secretion. They describe a potential
molecular mechanism mediating this anorexigenic com-
pound’s effects on adipose tissue. Selective modulation
of adipose tissue function could have important implica-
tions for therapeutic strategies of the insulin resistance
syndrome.
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